0
NotesKhan






IT6005                                         DIGITAL IMAGE PROCESSING                                            L T P C
3 0 0  3
OBJECTIVES:
The student should be made to:
  • Learn digital image fundamentals
  • Be exposed to simple image processing techniques
  • Be familiar with image compression and segmentation techniques
  • Learn to represent image in form of features

UNIT I             DIGITAL IMAGE FUNDAMENTALS                                                                              8
Introduction  – Origin – Steps in Digital Image Processing  – Components  – Elements of  Visual Perception – Image Sensing and Acquisition – Image Sampling and Quantization – Relationships between pixels - color models

UNIT II            IMAGE ENHANCEMENT                                                                                             10
Spatial Domain: Gray level transformations – Histogram processing – Basics of Spatial Filtering–
Smoothing and Sharpening Spatial Filtering – Frequency Domain: Introduction to Fourier Transform
– Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters

UNIT III         IMAGE RESTORATION AND SEGMENTATION                                                           9
Noise models – Mean Filters – Order Statistics – Adaptive filters – Band reject Filters – Band pass Filters – Notch Filters – Optimum Notch Filtering – Inverse Filtering – Wiener filtering Segmentation: Detection of Discontinuities–Edge Linking and Boundary detection – Region based segmentation- Morphological processing- erosion and dilation

UNIT IV        WAVELETS AND IMAGE COMPRESSION                                                                    9
Wavelets – Subband coding - Multiresolution expansions - Compression: Fundamentals – Image
Compression models – Error Free Compression – Variable Length Coding – Bit-Plane Coding – Lossless  Predictive  Coding  –  Lossy  Compression  –  Lossy  Predictive  Coding  –  Compression Standards

UNIT V        IMAGE REPRESENTATION AND RECOGNITION                                                          9
Boundary representation – Chain Code – Polygonal approximation, signature, boundary segments – Boundary description – Shape number – Fourier Descriptor, moments- Regional Descriptors – Topological feature, Texture - Patterns and Pattern classes - Recognition based on matching.

TOTAL: 45 PERIODS

OUTCOMES:
Upon successful completion of this course, students will be able to:
  • Discuss digital image fundamentals
  • Apply image enhancement and restoration techniques
  • Use  image compression and segmentation Techniques
  • Represent features of  images

TEXT BOOK:
  1. Rafael C. Gonzales, Richard E. Woods, “Digital Image Processing”, Third Edition,  Pearson
Education, 2010.

REFERENCES:
  1. Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, “Digital Image Processing Using
MATLAB”, Third Edition Tata McGraw Hill Pvt. Ltd., 2011.
  1. Anil Jain K. “Fundamentals of Digital Image Processing”, PHI Learning Pvt. Ltd., 2011.
  2. Willliam K Pratt, “Digital Image Processing”, John Willey, 2002.
  3. Malay K.  Pakhira,  “Digital  Image  Processing  and  Pattern  Recognition”,  First  Edition,  PHI
Learning Pvt. Ltd., 2011.
  1. http://eeweb.poly.edu/~onur/lectures/lectures.html
  2. http://www.caen.uiowa.edu/~dip/LECTURE/lecture.html


Post a Comment Blogger

 
Top